28 research outputs found

    Recognition of Process Disturbances for an SPC/EPC Stochastic System Using Support Vector Machine and Artificial Neural Network Approaches

    Get PDF
    Because of the excellent performance on monitoring and controlling an autocorrelated process, the integration of statistical process control (SPC) and engineering process control (EPC) has drawn considerable attention in recent years. Both theoretical and empirical findings have suggested that the integration of SPC and EPC can be an effective way to improve the quality of a process, especially when the underlying process is autocorrelated. However, because EPC compensates for the effects of underlying disturbances, the disturbance patterns are embedded and hard to be recognized. Effective recognition of disturbance patterns is a very important issue for process improvement since disturbance patterns would be associated with certain assignable causes which affect the process. In practical situations, after compensating by EPC, the underlying disturbance patterns could be of any mixture types which are totally different from the original patterns. This study proposes the integration of support vector machine (SVM) and artificial neural network (ANN) approaches to recognize the disturbance patterns of the underlying disturbances. Experimental results revealed that the proposed schemes are able to effectively recognize various disturbance patterns of an SPC/EPC system

    Body Fat Percentage Prediction Using Intelligent Hybrid Approaches

    Get PDF
    Excess of body fat often leads to obesity. Obesity is typically associated with serious medical diseases, such as cancer, heart disease, and diabetes. Accordingly, knowing the body fat is an extremely important issue since it affects everyone’s health. Although there are several ways to measure the body fat percentage (BFP), the accurate methods are often associated with hassle and/or high costs. Traditional single-stage approaches may use certain body measurements or explanatory variables to predict the BFP. Diverging from existing approaches, this study proposes new intelligent hybrid approaches to obtain fewer explanatory variables, and the proposed forecasting models are able to effectively predict the BFP. The proposed hybrid models consist of multiple regression (MR), artificial neural network (ANN), multivariate adaptive regression splines (MARS), and support vector regression (SVR) techniques. The first stage of the modeling includes the use of MR and MARS to obtain fewer but more important sets of explanatory variables. In the second stage, the remaining important variables are served as inputs for the other forecasting methods. A real dataset was used to demonstrate the development of the proposed hybrid models. The prediction results revealed that the proposed hybrid schemes outperformed the typical, single-stage forecasting models

    Hybrid Artificial Neural Networks Modeling for Faults Identification of a Stochastic Multivariate Process

    Get PDF
    Due to the recent rapid growth of advanced sensing and production technologies, the monitoring and diagnosis of multivariate process operating performance have drawn increasing interest in process industries. The multivariate statistical process control (MSPC) chart is one of the most commonly used tools for detecting process faults. However, an out-of-control MSPC signal only indicates that process faults have intruded the underlying process. Identifying which of the monitored quality variables is responsible for the MSPC signal is fairly difficult. Pinpointing the responsible variable is vital for process improvement because it effectively determines the root causes of the process faults. Accordingly, this identification has become an important research issue concerning recent multivariate process applications. In contrast with the traditional single classifier approach, the present study proposes hybrid modeling schemes to address problems that involve a large number of quality variables in a multivariate normal process. The proposed scheme includes multivariate adaptive regression splines (MARS), logistic regression (LR), and artificial neural network (ANN). By applying MARS and LR techniques, we may obtain fewer but more significant quality variables, which can serve as inputs to the ANN classifier. The performance of our proposed approaches was evaluated by conducting a series of experiments

    Hybrid Soft Computing Schemes for the Prediction of Import Demand of Crude Oil in Taiwan

    Get PDF
    Crude oil is the most important nonrenewable energy resource and the most key element for the world. In contrast to typical forecasts of oil price, this study aims at forecasting the demand of imported crude oil (ICO). This study proposes different single stage and two-stage hybrid stages of forecasting models for prediction of ICO in Taiwan. The single stage forecasting modeling includes multiple linear regression (MLR), support vector regression (SVR), artificial neural networks (ANN), and extreme learning machine (ELM) approaches. While the first step of the two-stage modeling is to select the fewer but more significant explanatory variables, the second step is to generate predictions by using these significant explanatory variables. The proposed two-stage hybrid models consist of integration of different modeling components. Mean absolute percentage error, root mean square error, and mean absolute difference are utilized as the performance measures. Real data set of crude oil in Taiwan for the period of 1993–2010 and twenty-three associated explanatory variables are sampled and investigated. The forecasting results reveal that the proposed two-stage hybrid modeling is able to accurately predict the demand of crude oil in Taiwan

    Information and Control ICIC International c ⃝2011 ISSN

    Get PDF
    Abstract. The statistical process control (SPC) chart is effective in detecting proces

    Body Fat Percentage Prediction Using Intelligent Hybrid Approaches

    No full text
    Excess of body fat often leads to obesity. Obesity is typically associated with serious medical diseases, such as cancer, heart disease, and diabetes. Accordingly, knowing the body fat is an extremely important issue since it affects everyone's health. Although there are several ways to measure the body fat percentage (BFP), the accurate methods are often associated with hassle and/or high costs. Traditional single-stage approaches may use certain body measurements or explanatory variables to predict the BFP. Diverging from existing approaches, this study proposes new intelligent hybrid approaches to obtain fewer explanatory variables, and the proposed forecasting models are able to effectively predict the BFP. The proposed hybrid models consist of multiple regression (MR), artificial neural network (ANN), multivariate adaptive regression splines (MARS), and support vector regression (SVR) techniques. The first stage of the modeling includes the use of MR and MARS to obtain fewer but more important sets of explanatory variables. In the second stage, the remaining important variables are served as inputs for the other forecasting methods. A real dataset was used to demonstrate the development of the proposed hybrid models. The prediction results revealed that the proposed hybrid schemes outperformed the typical, single-stage forecasting models

    Prediction of Currency Volume Issued in Taiwan Using a Hybrid Artificial Neural Network and Multiple Regression Approach

    No full text
    Because the volume of currency issued by a country always affects its interest rate, price index, income levels, and many other important macroeconomic variables, the prediction of currency volume issued has attracted considerable attention in recent years. In contrast to the typical single-stage forecast model, this study proposes a hybrid forecasting approach to predict the volume of currency issued in Taiwan. The proposed hybrid models consist of artificial neural network (ANN) and multiple regression (MR) components. The MR component of the hybrid models is established for a selection of fewer explanatory variables, wherein the selected variables are of higher importance. The ANN component is then designed to generate forecasts based on those important explanatory variables. Subsequently, the model is used to analyze a real dataset of Taiwan's currency from 1996 to 2011 and twenty associated explanatory variables. The prediction results reveal that the proposed hybrid scheme exhibits superior forecasting performance for predicting the volume of currency issued in Taiwan

    Applying Residual Control Charts to Identify the False Alarms in a TFT-LCD Manufacturing Process

    No full text
    Abstract: Statistical Process Control (SPC) is widely applied to monitor and improve highly integrated and automated manufacturing processes. Adopting proper SPC charts and corresponding detection mechanisms is crucial for a TFT-LCD manufacturing process. This study conducts an empirical study of highly complex TFT-LCD manufacturing processes to identify the most suitable SPC method. The TFT-LCD manufacturing process is generally divided into three main procedures, namely Array Engineering to create the TFT array, Cell Engineering to join the TFT array, liquid crystal and color filter together, and Module Engineering to integrate PCB and semiconductor chips into final products. The crucial step in Cell Engineering is injecting the liquid crystal into the layer between the TFT array and color filter substrates and the thickness of the layer is the main control target. Applying traditional Shewhart and EWMA control charts to real TFT-LCD manufacturing data reveals a significant false alarm rate, and these false alarms can adversely impact manufacturing efficiency. Based on time series analysis, this study proposes a residual control chart using an AR(1) model to avoid false alarms that could obstruct TFT-LCD manufacturing flow. The results of the proposed approach provide a useful guideline for improving the TFT-LCD manufacturing

    Hybrid artificial neural networks modeling for faults identification of a stochastic multivariate process,”

    No full text
    Due to the recent rapid growth of advanced sensing and production technologies, the monitoring and diagnosis of multivariate process operating performance have drawn increasing interest in process industries. The multivariate statistical process control (MSPC) chart is one of the most commonly used tools for detecting process faults. However, an out-of-control MSPC signal only indicates that process faults have intruded the underlying process. Identifying which of the monitored quality variables is responsible for the MSPC signal is fairly difficult. Pinpointing the responsible variable is vital for process improvement because it effectively determines the root causes of the process faults. Accordingly, this identification has become an important research issue concerning recent multivariate process applications. In contrast with the traditional single classifier approach, the present study proposes hybrid modeling schemes to address problems that involve a large number of quality variables in a multivariate normal process. The proposed scheme includes multivariate adaptive regression splines (MARS), logistic regression (LR), and artificial neural network (ANN). By applying MARS and LR techniques, we may obtain fewer but more significant quality variables, which can serve as inputs to the ANN classifier. The performance of our proposed approaches was evaluated by conducting a series of experiments

    Change Point Determination for an Attribute Process Using an Artificial Neural Network-Based Approach

    No full text
    The change point identification has played a vital role in process improvement for an attribute process. This identification is able to effectively help process personnel to quickly determine the corresponding root causes and significantly improve the underlying process. Although many studies have focused on identifying the change point of a process, a generic identification approach has not been developed. The typical maximum likelihood estimator (MLE) approach has limitations: particularly, the known prior process distribution and mathematical difficulties. These deficiencies are commonly encountered in practice. Accordingly, this study proposes an artificial neural network (ANN) mechanism to overcome the difficulties of typical MLE approach in determining the change point of an attribute process. Specifically, the performance among the statistical process control (SPC) chart alone, the typical MLE approach, and the proposed ANN mechanism are investigated for the following cases: (1) a known attribute process distribution with the associated MLE being available to be used, (2) an unknown attribute process distribution with the MLE being unable to be used, and (3) an unknown attribute process distribution with the MLE being misused. The superior results and the performance of the proposed approach are reported and discussed
    corecore